
The silent network

Denying the spam and malware chatter using
free tools

Peter N. M. Hansteen
peter@bsdly.net

According to statements by a certain proprietary software marketer, the spam and
malware problem should have been solved by now. That company isn’t even
close, but in the free software world we are getting there fast and having fun at the
same time. This paper offers an overview of principles and tools with real life
examples and data, and covers the almost-parallel evolution of malware and spam
and effective counter-measures. We present recent empirical data interspersed
with examples of practical approaches to ensuring a productive, malware and
spam free environment for your colleagues and yourself, using free tools. The
evolution of content scanning is described and contrasted with other methods
based on miscreants’ (and their robot helpers’) behavior, concluding with a
discussing of recent advances in greylisting and greytrapping with an emphasis
on those methods’ relatively modest resource demands.

Copyright © 2006-2007 by Peter N. M. Hansteen

This document is Copyright © 2006-2007 Peter N. M. Hansteen. All rights reserved.

Paper presented at the BSDCan conference in Ottawa, Ontario, Canada on May 18, 2007.

Table of Contents
Malware, virus, spam - some definitions ..1
A history of malware ...2

The first virus: the Elk Cloner ...2
The first PC virus: the (c)Brain..2
The first Unix worm: The Morris Worm ..2
Microsoft vs the internet...3
Characteristics of modern malware ...4

Spam - the other annoyance ..6
Spam: characteristics..6

Into the wild: the problem and principles for solutions...7
The ugly truth ...7
Fighting back, on the system internals level...7
Content scan..8

The comedy of our errors: Content scanning measures and countermeasures.....9
Behavioral methods ..11
Combined methods and some common pitfalls ...13

A working model ..15
Where do we fit in?..15
Setting up a mail server ...15
Giving spammers a harder time: spamd..18

The early days of pure blacklisting ...18
Introducing greylisting...19
Effects of implementation: Protecting the expensive appliance20
spamdb and greytrapping ..21
Useful new spamd features in OpenBSD 4.1..22

Conclusion ...24
Resources ...25

iii

List of Figures
1. Spam message containing random text..9
2. This stock scam text is actually a picture ..10
3. This could make you think they’re selling flowers...11
1. Likely spam message, tagged for filtering..17
2. Detailed spam scores for a likely spam message ...17
3. Number of SMTP Connections by connection length ..19
4. Hosts in traplist - active spam sending hosts ..21

iv

Malware, virus, spam - some definitions
In this session we will be talking about several varieties of the mostly mass produced
nuisances we as network admins need to deal with every day. However, you only need to
pick up an IT industry newspaper or magazine or go to an IT subject web site to see that
there is a lot of confusion over terms such as virus, malware and for that matter spam.
Even if a large segment of the so called security industry does not appear to put a very high
value on precision, we will for the sake of clarity spend a few moments defining the
parameters of what we are talking about.

To that end, I’ve taken the time to look up the definitions of those terms at Wikipedia and
a few other sources, and since the Wikipedia definitions agree pretty well with my own
prejudices I will repeat them here:

• Malware or Malicious Software is software designed to infiltrate or damage a computer
system without the owner’s informed consent.

• A computer virus is a self-replicating computer program written to alter the way a
computer operates, without the permission or knowledge of the user.

• Another common subspecies of malware is the worm, commonly defined as “a program
that self-propagates across a network exploiting security or policy flaws in widely-used
services”1

• The term zombie is frequently used to describe computers which are under remote
control after a successful malware or manual attack by miscreants.

• Spamming is the abuse of electronic messaging systems to send unsolicited, undesired
bulk messages. While the most widely recognized form of spam is e-mail spam, the term
is applied to similar abuses in other media [. . .]

You will notice that I have left out some parts at the end here, but if you’re interested, you
can look up the full versions at Wikipedia. And of course, if you read on, much of the
relevant information will be presented here anyway, if possibly in a slightly different style
and supplemented with a few other items, some even of distinct practical value. But first,
we need to dive into the past in order to better understand the background of the problems
we are trying to solve or at least keep reasonably contained on a daily basis.

1. This definition is taken from a 2003 paper, Weaver, Paxson, Staniford and Cunningham: “A Taxonomy of
Computer Worms” (http://citeseer.ist.psu.edu/weaver03taxonomy.html)

1

A history of malware

The first virus: the Elk Cloner
According to the Wikipedia ’Computer Virus’ article1, the first computer virus to be found
in the wild, outside of research laboratories, was the 1982 "elk cloner" written by Rich
Skrenta, then a teenager in Southern California.

The virus was apparently non-destructive, its main purpose was to annoy Skrenta’s friends
into returning borrowed floppy disks to him. The code ran on Apple II machines and
attached itself to the Apple DOS system files.

Apple DOS and its single user successors such as MacOS up to System 9 saw occasional
virus activity over the following years, much like the other personal systems of the era
which all had limited or no security features built into the system.

The first PC virus: the (c)Brain
It took a few years for the PC world to catch up. The earliest virus code for PCs to be found
in the wild was a piece of software called (c)Brain, which was written and spread all over
the world in 1986. (c)Brain attached itself to the boot sector on floppies. In contrast to quite
a number of PC malware variants to follow, this particular virus was not particularly
destructive beyond the damage done by altering the boot sectors.

Like most of the popular personal computer systems of the era, MS-DOS had essentially no
security features whatsoever. In retrospect it was probably inevitable that PC malware
blossomed into a major problem.

With system vendors unable or unwilling to rewrite the operating systems to eliminate the
bugs which let the worms propagate, an entire industry grew out of enumerating badness2.

To this day a large part of the PC based IT sector remains dedicated to writing malware
and producing ever more elaborate workarounds for the basic failures of the MS-DOS
system and its descendants. Current virus lists typically contain signatures for
approximately 100,000 variants of mainly PC malware.

The first Unix worm: The Morris Worm
Meanwhile in the Unix world, with its better connected and relatively well educated user
base, things were relatively peaceful, at least for a while. The peace was more or less
shattered on November 2, 1988 when the first Unix worm, dubbed the Morris worm hit

1. See the Wikipedia ’Computer Virus’ article (http://en.wikipedia.org/wiki/Computer_virus)
2. The origin of the term enumerating badness is uncertain, but most frequently attributed to Marcus
Ranum, in the must-read, often cited web accessible article “The Six Dumbest Ideas in Computer Security”
(http://www.ranum.com/security/computer_security/editorials/dumb/index.html). It’s fun as well as useful and
very readable.

2

A history of malware

Unix machines on the early Internet. This was both the first replicating worm in a Unix
environment and the first example of a worm which used the network to propagate.

Almost 20 years later, there is still an amazing amount of information on the worm
available on the net, including what appears to be the complete source code to the worm
itself and a number of analyses by highly competent people. It’s all within easy reach from
your favourite search engine, so I’ll limit myself to repeating the main points. Some of the
Morris worm’s characteristics will be familiar.

• It was system specific Even though there are indications that the worm was intended to
run on more architectures, it was in fact only able to run successfully on VAXes and sun3
machines running BSD.

• It exploited bugs and sloppiness Like pretty much all of its successors, the Morris worm
exploited bugs in common programs, such as a buffer overflow in fingerd, used the
commonly enabled debug mode in sendmail - which allowed remote execution of
commands - along with a short dictionary of likely passwords.

• It replicated and spread Once the worm got in, it started the process of spreading.
Fortunately, the worm was designed mainly to spread, not to do any damage.

• It lead to denial of service Unfortunately, the worm code itself had a bug which made it
more efficient at spreading itself than its author had anticipated, and caused a large
increase in network traffic, slowing down Internet traffic to a large number of hosts.
Some hosts worked around the problem by disconnecting themselves from the Internet
temporarily. In one sense, it may have been one of the earliest “Denial of Service”
incidents recorded.

The worm was estimated to have reached rougly 10% of the hosts conntected to the
Internet at the time, and the most commonly quoted estimate of an absolute number is
"around 6,000 hosts".

The event was quite stressful for, by today’s standards, a very small group of people. In
retrospect, it is probably fair to say that the episode mainly served to make Unixers in
general aware that there was a potential for security problems, and developers and
sysadmins set out to fix the problems.

Microsoft vs the internet
The final components to form the current mess arrived on the scene in the second part of
the 1990s when Microsoft introduced modern networking components to the default setup
of their PC system software which came preinstalled on consumer grade computers. This
happened at roughly the same time that several office type applications started shipping
with their own fairly complete programming environments for macro languages.

Riding on the coattails of the early 1990s commercialization of the Internet, Microsoft
started real efforts to interface with the Internet in the mid 1990s. Up until some time in
1995, Internet connectivity was an optional extra to Microsoft users, mainly through third
party stacks and frequently through hard to configure dial-up connections.

3

A history of malware

Like the third party offerings, Microsoft’s own TCP/IP stack was an optional extra –
downloadable at no charge, but not installed by default until late editions of Windows 3.11
started shipping with the TCP/IP stack by default.

However, the all-out assault and their as good as claims to have invented the whole thing
came only after a largely failed attempt at getting all Windows 95 users to sign up to the
all-proprietary, closed-spec, dial-in Microsoft Network, which was in fact the first to use the
name and the MSN abbreviation.

The original Microsoft Network service did have some limited Internet connectivity;
anecdotal evidence indicates that simple email transmissions to Internet users and back
could take several days each way.

As luck or misfortune would have it, by the time Microsoft’s Internet adventure started,
several of their applications had been extended to include application macro programming
languages which were pretty complete programming environments.

In retrospect we can confidently state that malware writers adapted more quickly to the
changed circumstances than Microsoft did. The combination of network connectivity,
powerful macro languages and applications which were network aware on one level but
had not really incorporated any important security concepts and, of course, the sheer
number of targets available proved quite impossible to resist.

The late 1990s and early 2000s saw a steady stream of internet enabled malware on the
Microsoft platform, sometimes with several new variants each day, and never more than a
few weeks apart. A semi-random sampling of the more spectacular ones include Melissa,
ILOVEYOU, Sobig, Code red, Slammer and others; some were quite destructive, while
others were simply very efficient at spreading their payload.

They all exploited bugs and common misconfigurations much like the Morris worm had
done a decade or more earlier. Greg Lehey’s June 2000 notes on one of the more pervasive
worms is still worth reading.3 The description is one of many indications that by 2000,
malware writers had learned to mine the data in their victims’ mail boxes and contact lists
for useful data.

During the same few years, Microsoft’s stance also developed somewhat. Their traditional
response had been We do not have bugs, then moved gradually to releasing patches and
’hot fixes’ at an ever increasing rate, and finally moving to a regime of a monthly “Patch
Tuesday” in order introduce some predictability to their customers’ workday.

Characteristics of modern malware
Back in the day, the malicious and destructive software got all the attention. From time to
time a virus, worm or other malware would grab headlines for destroying people’s systems,
in one case even overwriting system BIOSes of a common variety of PCs. I have no real
numbers to back this up, but one likely theory is that during the early years malware
writers may have been mainly youthful pranksters and the odd academic, and getting
attention may been the main motivator.

3. Greg Lehey: Seen it all before? (http://ezine.daemonnews.org/200006/dadvocate.html), Daemon’s Advocate,
The Daemon News ezine, June 2000 edition

4

A history of malware

In contrast, modern malware tries to take over your system without doing any damage a
user or less attentive system administrator would notice. Typical malware today delivers
its payload which then proceeds to take control of your computer - turning it into a zombie,
usually to send spam, to infect other computers, or to perform any function the malware
writer’s customer needs to be done by remote control.

There is ample evidence that once machines are taken over, installed malware is likely to
record users’ keystrokes, mine the file systems for financial and identification data, and of
course any sort of remote controlled network activity such as participation in attacks on
specific networks. There is also anecdotal evidence to suggest that a significant subset of
online casino players are in fact remote controlled game playing robots running on
compromised computers.

5

Spam - the other annoyance
The first spam message sent is usually considered to be a message sent via ARPANET
email in 1978, from a marketing representative at the Digital Equipment Corporation’s
Marlboro site. Acccording to much repeated anecdotes the message was sent to "every
Arpanet address on the west coast"1 of the USA. The message announced a demo of the
then new and exciting DEC20 line of computers and the TOPS-20 operating system, and
like many of its successors showed signs of sender’s incompetence - the list of intended
recipients was longer than the mail application was able to accept, and the list overflowed
into the message itself.

The message was well intended, but the reaction was overwhelmingly negative, and
unsolicited commercial messages appear to have been close to non-existent, at least by
modern standards, for quite a while after this particular incident.

The spam problem remained more or less a dormant, potential problem until the
commercialization of the Internet in the early 1990s. By then, email spam was still close to
non-existent, but unsolicited commercial messages had started appearing on the USENET
news discussion groups.

In 1994, there were several incidents involving messages posted to all news groups the
originators were able to reach. The first incident, in January, involved a religious message,
followed a few weeks later by message hawking the services of a US law firm. At the time
this would have meant that several thousand unrelated discussion groups received the
same message, crossposted or repeated.

The spam problem is sometimes cited as a major part of the reason why USENET declined
in readership in favor of web forums, but in fact the USENET spam problem was largely
solved within an impressively short time. Counter measures by USENET admins,
including USENET Death Penalty (kicking a site off the USENET), cancelbots (automatic
cancelling of articles which meet or exceed set criteria) and various semi-manual
monitoring schemes were largely, if not totally effective in eliminating the spam problem.

However, with an increasing Internet user population, the number of email users grew
faster than the number of USENET users, and spammers largely turned their attention
back to email towards the end of the 1990s. As we mentioned earlier, mass mailed
messages were found to be effective carriers of malware.

Spam: characteristics
The two main characteristics of spam messages have traditionally been summed up as: A
typical spam run consists of a large number of identical messages, and the content of the
messages tend to form recognizable patterns. In addition, we will be looking at some
characteristics of spammer and malware writer behavior.

1. See Reflections on the 25th Anniversary of Spam (http://www.templetons.com/brad/spam/spam25.html), by
Brad Templeton

6

Into the wild: the problem and principles for
solutions

The ugly truth
In order to understand how malware propagates, we need to recognize a few basic truths
about people, programming and the code we produce and consume. Some groups, such as
the OpenBSD project, has turned to code audits, motivated by what can be summed up as
the following two clauses:

1. All non-trivial software has bugs

2. Some of these bugs are exploitable

Even though we all wish we were perfect and never made any mistakes, it is a fact of life
that even highly intelligent, well educated, mentally balanced and well disciplined people
do occasionally make mistakes.

The code audits, sometimes described as a process of reading the code like the Devil reads
the Bible, concentrate on finding not only individual errors, but also recognizing patterns of
the errors programmers make, and have turned up and eliminated whole classes of bugs in
the source code audited.1

The code audits also lead to the creation of a few exploit mitigation techniques, which are
the subject of the next section.

Fighting back, on the system internals level
The code audits spearheaded by the OpenBSD project lead to the realization that even
though we can become very good at eliminating bugs, we should always consider the
possibility that we will not catch all bugs in time. We already know that some of the bugs
in our code can be used or exploited to make the system do things we did not intend, so
making it harder for a prospective attacker to exploit our bugs may be worthwhile. The
OpenBSD project coined the term exploit mitigation for these techniques2 .

I will cover some of these techniqes briefly here:

• Stack smashing/random stack gap:

In several types of buffer overflow bug exploits, the exploit depends critically on the fact
that in most architectures, the stack and consequently the buffer under attack starts at
a fixed position in memory. Introducing a random-sized gap at the top of the stack means

1. For more information on the goals and methods of these code audits, see the OpenBSD Project’s Security page
(http://www.openbsd.org/security.html) and Damien Miller’s AsiaBSDCon 2007 presentation, available from the
OpenBSD project’s Papers and presentations page (http://www.openbsd.org/papers/).
2. The techniques described here are covered in far more detail in Theo de Raadt’s OpenCON 2005 presentation
Exploit Mitigation techniques (http://www.openbsd.org/papers/ven05-deraadt/index.html).

7

Into the wild: the problem and principles for solutions

that jumping to the fixed address the attackers ’know’ contains their code kills a large
subset of these attacks. The buggy program is likely to crash early and often.

• W^X: memory can be eXecutable XOR Writable

Some bugs are possible to exploit because it is possible to have writable memory which is
also executable. Implementing a sharp division involved some subtle surgery on how the
binaries are constructed, with a slight performance hit. However, the performance was
optimized back, and any attempts at writing to eXecutable memory will fail. Once again,
buggy software fails early and often.

• randomized mmap(), malloc()

One of the more ambitious bits of work in progress is to introduce randomization in
mmap() and malloc(). Like the other features we have touched on here, it has been
eminently useful in exposing bugs. Flaws which just lead to random instabilities or odd
behavior is much more likely to break horribly with randomized memory allocation.

• Privilege separation

One classic problem which has proved eminently exploitable is that programs have
tended to run effectively as root, with more privileges than they actually need once
they’ve bound themselves to the reserved port. Some simple programs were easy to
rewrite to drop privileges and execute their main task with only the privileges actually
needed. Other, larger daemons such as sshd needed to be split into several processes,
some running in chroot, some bits retaining privileges, others running at minimum
privilege levels.

If it is not already obvious, one important effect of implementing these restrictions has
been that these changes in the system environment has exposed bugs in a lot of software.
For example, Mozilla’s Firefox was for some time known to crash a lot more often on
OpenBSD than almost anywhere else. However, the fixes for the exposed bugs tend to
make it back into the various projects’ main code bases.

Content scan
Virus scanners One of the first ideas security people hit upon when faced with files which
could be carriers of something undesirable was to scan the files for specific kinds of content.
Early content scanners were pure virus scanners which ran on MS-DOS and scanned local
file systems for known bad content such as the byte sequences equal to known malware.

Over time as the number of known bad sequences grew, the technology to do hashed
lookups was introduced. At present the total number of known types of malware is
estimated to exceed 200,000 signatures. Makers of most malware scanning products issue
updates on an as needed basis, recently this means that they might issue several signature
updates per day.

8

Into the wild: the problem and principles for solutions

Spam filters were at first close cousins to the bruteforce signature or substring lookup
based virus packages. However, packages such as the freeware, Perl based SpamAssassin
soon introduced rule based classification systems. The rule evaluation model
SpamAssassin uses assigns weights to individual rules, allowing for site specific
adjustments. Modern evaluation tools typically contain rules to evaluate both the message
bodies and the message header information in order to determine the probability that a
message is spam.

Another feature of modern filtering systems is that they are either built around or employ
as optional modules various statistics based classification methods such as Bayesian logic,
the Chi-Square method, Geometric and Markovian Discrimination. The statistics based
methods are generally customized via training, based on a corpus of spam and legitimate
mail collected by the site or user.

As the lists of signatures have grown to include an ever larger number of entries and have
been supplemented with the more involved statistical calculations, content scanning has
developed into one of the more resource intensive computations most of us will encounter.

The comedy of our errors: Content scanning measures and
countermeasures

Even with such a formidable arsenal of tools at our disposal, it is important to keep in
mind that all the methods we have mentioned have a nonzero error rate. Once you are
done with setting up your filtering solution, you will find that care and feeding will include
compensating for problems caused by various errors.

In a filtering context, our errors will fall into two categoies, either false negatives or data
which our system fails to recognize as undesirable even when it is, or false positives, where
the system mistakenly classifies data as undesirable. Here is a sequence of events which
illustrates some of the problems we face when we rely on content evaluation:

Keyword lookup: Matching on specific words which were known to be more common in
unwanted messages than others was one of the early successes of spam filtering software.
The other side soon hit on the obvious workaround - misspelling those keywords slightly,
for a short time shrouding the message behind the likes of V1AGR4 or pr0n. Again the
countermeasures were fairly obvious; soon all content filtering products included regular
expression substring match code to identify variations on the key words.

Word frequency and similar statistics As the text analysis tools grew ever more accurate
thanks to statistical analysis, the other side hit on the obvious countermeasure of including
largish chunks of unrelated text in order to make the message appear as close as possible
to ordinary communications to the content scanners. The text could be either semi-random
strings of words or fragments of web accessible text, as illustrated by Figure 1:

9

Into the wild: the problem and principles for solutions

Figure 1. Spam message containing random text

Hidden in there is a very short sequence of characters which describes what they are
trying to sell. At times we see messages which appear not to have any such payload, just
the random text. It is not clear whether these messages are simply products of errors by
inept spamware operators or, as some observers have speculated, if they are part of a
larger scheme to distort the statistical basis for content scanners.

Text analysis vs graphics So it became rather obvious that we are getting rather good at
scanning text, and the other side made their next move. Figure 2 shows an example of a
stock scam, all text really, but promoted via an embedded graphic, along with a
semi-random chunk of text grabbed from somewhere on the web:

Figure 2. This stock scam text is actually a picture

10

Into the wild: the problem and principles for solutions

The text-as-picture messages spurred the development of optical character recognition
(OCR) plugins for content scanning antispam tools, and a few weeks later text-as-picture
spams started coming with distorted backgrounds, as seen in Figure 3:

Figure 3. This could make you think they’re selling flowers

All of these examples were taken from messages I have received, the last one in November
2006 when the various tools were not yet perfectly tuned to get rid of those specific
nuisances. Newer SpamAssassin plugins such as FuzzyOcr are making good progress in
identifying these variants, at the cost of some processing power.

The sequence is certainly not unique, and we should probably expect to see similar mini
arms races in the future. One obvious consequence of the ever-increasing complexity in
content filtering is that mail handling, once a reasonably straightforward and
undemanding activity, now requires serious number crunching capability. And it bears
repeating that you should expect a non-zero error rate in content classification.

Behavioral methods
Up to this point we have looked at what we can achieve first by making any bugs in our
operating system or applications harder to exploit, and next what can be done by studying
the content of the messages once we’ve received them or while our mail transfer agent is
processing the DATA part. From what we have seen so far, it is fairly obvious that the
other side is trying to hide their tracks and avoid detection.

Spammers lie This shows even more clearly if we study their behavior on the network
level. The often repeated phrase "Spammers lie, cheat and steal" at least to some extent
proves to be rooted in reality when we study spam and malware traffic.

Forged headers Spammers may or may not be truthful when describing the wares they are
promoting, but we can be more or less certain that they do their very best to hide their real
identities and use other people’s equipment and resources whenever possible. Studying the
message headers in a typical spam message, we can expect to find several classes of forged

11

Into the wild: the problem and principles for solutions

headers, including but not limited to the Received:, From: and X-Mailer: headers.
Perhaps more often than not, the apparent sender as taken from the From: header has no
connection whatsoever to the actual sender.

Sender identification Some such discrepancies are easy to detect, such as when a message
arrives from an IP address range radically different from the one you would expect when
performing a reverse DNS lookup based on the stated sender domain. Traditional Internet
standards do in fact not define a standard for determining whether a given host is a valid
mail sender for a given domain.

However, by 2003 work started on extensions to the SMTP protocol incorporating checks
for domain versus IP address mismatches. After a sometimes confusing process with
attempts at formalizing workable standards, these ideas were formalized into two
competing and somewhat incompatible methods, dubbed Sender Policy Framework (SPF)
and Sender ID respectively, one championed by a group of independent engineers and
researchers, the other originating at Microsoft. The initial hope that the differences and
incompatibilities would be resolved was further dashed in April 2006 when the two groups
chose to formulate separate RFCs describing their experimental protocols3.

Blacklists Once a message has been classified as spam, recording the IP address the
message came from and adding the address to a list of known spam senders is a relatively
straightforward operation. Such lists are commonly known as blacklists, which may in
turn be used in blocking, tarpitting or filtering.

Greylisting Possibly as a consequence of their using other people’s equipment for sending
their unwanted traffic, spam and malware sender software needs to be relatively
lightweight, and frequently the SMTP sending software does not interpret SMTP status
codes correctly.

This can be used to our advantage, via a technique which became known as greylisting4.
Even though Internet services are offered with no guarantees, usually described as ’best
effort’ services, a significant amount of effort has been put into making essential services
such as SMTP email transmission fault tolerant, making the ’best effort’ one with as close
as does not matter to having a perfect record for delivering messages.

The current standard for Internet email transmission is defined in RFC2821, which in
section 4.5.4.1, "Sending Strategy", states

"In a typical system, the program that composes a message has some method for requesting
immediate attention for a new piece of outgoing mail, while mail that cannot be transmitted
immediately MUST be queued and periodically retried by the sender."

and

"The sender MUST delay retrying a particular destination after one attempt has failed. In
general, the retry interval SHOULD be at least 30 minutes; however, more sophisticated and

3. The relevant RFCs are RFC 4406 and RFC 4407 for the Microsoft method, which describe the Sender ID
protocol and the Purported Responsible Address (PRA) algorithm it depends on respectively, and RFC 4408 for
SPF.
4. Greylisting as a technique was presented in a 2003 paper by Evan Harris. The original Harris paper and a
number of other useful articles and resources can be found at the greylisting.org (http://www.greylisting.org/) web
site.

12

Into the wild: the problem and principles for solutions

variable strategies will be beneficial when the SMTP client can determine the reason for
non-delivery."

RFC2821 goes on to state that

"Retries continue until the message is transmitted or the sender gives up; the give-up time
generally needs to be at least 4-5 days."

After all, delivering email is a collaborative, best effort thing, and the RFC states clearly
that if the site you are trying to send mail to reports it can’t receive anything at the
moment, it is your DUTY (a MUST requirement) to try again later, after an interval which
is long enough that your unfortunate communication partner has had a chance to clear up
whatever was the problem.

The short version is, greylisting is the SMTP version of a white lie. When we claim to have
a temporary local problem, the temporary local problem is really the equivalent of “my
admin told me not to talk to strangers”. Well behaved senders with valid messages will
come calling again later, but spammers have no interest in waiting around for the retry,
since it would increase their cost of delivering the messages. This is the essence of why
greylisting still works. And since it’s really a matter of being slightly pedantic about
following accepted standards, false positives are very rare.

Greytrapping The so far final advance in spam fighting is greytrapping, a technique
pioneered by Bob Beck and the OpenBSD team as part of the spamd almost-but-not-quite
SMTP daemon. This technique makes good use of the fact that the address lists spammers
routinely claim are verified as valid, deliverable addresses are in fact anything but.

With a list of greytrap addresses which are not expected to receive valid mail, spamd adds
IP addresses which try to deliver mail to the greytrap addresses to its local blacklist for 24
hours. Blacklisted addresses are then treated to the tarpit, where their SMTP dialog
receives responses at a rate of one byte per second.

The intention, and to a large extent the actual effect, is to shift the load back to the sender,
keeping them occupied with a very slow SMTP dialogue. We will return to this in a later
section.

Combined methods and some common pitfalls
It is worth noting that products frequently use some combination of content scan and
network behavior methods. For example, spamassassin incorporates rules which evaluate
message header contents, using SPF data as a factor in determining a message’s validity,
while at the same time using locally generated bayesian token data to evaluate message
contents.

We have already touched on the danger of false positives and the main downside of content
filtering, and it is worth noting the possible downsides and pitfalls which come with the

13

Into the wild: the problem and principles for solutions

behavior based methods too.5

Header mismatches While most simple header mismatch checks are reliable, the one
important criticism of SPF and Sender ID is that the schemes are incompatible with
several types of valid message forwarding, another that the problem of roaming users on
dynamic IP adresses who still need to send mail has yet to be solved.

Blacklists The ways blacklists are generated, maintained and used are almost too
numerous to list here. The main criticism and pitfalls lie in the way the lists are generated
and maintained. Some lists have tended to include entire ISP networks’ IP ranges as
“know spam senders” in an attempt to force ISPs to cancel spammers’ contracts. Another
recurring complaint is that lists are less than actively maintained and may include out of
date data. Both can lead to false positives and legitimate mail lost. Unfortunately, some
popular blacklists have at times been abused and employed as instruments in personal
vendettas. For those reasons, it always pays to check a list’s maintenance policy and its
reputation for accuracy before using a list as sufficent reason to reject mail.

Greylisting Even valid senders will experience a delay in delivery of the initial message.
The length of the delay varies according to a number of factors, some of which are not
under the greylister’s control. A more serious issue is that some large sites do not
necessarily perform the delivery retries from the same IP address as the one used for the
initial attempt. A large enough pool of possible sending hosts and a sufficiently random
retry pattern could lead to delivery timeout. Whitelisting the sites in question may be a
temporary workaround, however with greylisting entering the mainstream it is expected
that the problem of random redelivery will decrease and hopefully disappear entirely.

Greytrapping The only known risk of using greytrapping to date is that the backscatter of
“message undeliverable” bounce messages resulting from spam messages sent with one of
your trap addresses as apparent sender may cause mail servers configured to send
nondelivery messages to enter your blacklist. This will cause loss or delayed delivery of
valid mail if the backscattering mail server needs to deliver valid mail to your site. How
often, if at all, this happens depends on several semi-random factors, including the
configuration policies of the other sites’ mail servers.

5. The inner workings of proprietary tools are generally secret, but one particularly bizarre incident involving
Microsoft’s Exchange Hosted Services reveals at least some of the inner workings of that particular product.
All available evidence indicates that their system treats substring match based on a phishing message to be a
valid reason to block or “quarantine” messages from a domain, and that their data do not expire. The incident is
chronicled by a still puzzled network administrator at this site (http://www.bsdly.net/~peter/bizarre-incident/).

14

A working model

Where do we fit in?
Unix sysadmins find themselves in an inbetween position of sorts. We can never totally
rule out that our systems are vulnerable, but malware which will actually manage to
exploit a well run UNIX system is rarely seen in the wild, if at all.

A well run system means that best practice procedures are applied to system
administration: we do not run unneccessary services, we install any security related
updates, we enforce password policies and so on.

However, we more likely than not run services for users who run their main environment
on vulnerable platforms. Malware for the vulnerable platforms more likely than not
spreads via email, which is quite likely one of the services we handle.

We’ll take a look at email handling, then move on to some productive uses of packet
filtering (aka firewalls) later.

Setting up a mail server
Back when SMTP email was designed, the main emphasis was on making as sure as
possible, without actually making hard guarantees, that mail would get delivered to the
intended recipient. As we have seen, things get a little more complicated these days. The
main steps to configuring the mail service itself are as follows:

1. Choose your MTA

BSDs generally come with sendmail as part of the base system. For our sites we have
chosen to use exim for several reasons. Despite its human readable configuration files,
it offers enormous flexibility, and on FreeBSD users will find that the package message
offers a screenful of help to configure your mail service to do spam and malware
filtering during message receipt.

The main point is that your mail transfer agent needs to be able to cooperate with
external programs for filtering. Most modern MTAs do; the other popular choices are
postfix or sendmail.

2. Consider setting up your mailserver to do greylisting

All the early greylisting implementations and several of the options in use today were
written as optional modules for mail transfer agents. If, for example, you will not be
using PF anywhere, using spamd (which we will be covering in more detail later) is not
really an option, and you may want to go for and in-MTA option, such as a sendmail
milter such as greylist-milter or a postfix policy server such as postgrey.

15

A working model

In some environments, the initial delay in delivery of the first message may be
undesirable or downright unacceptable; in such cases, the option of greylisting is
unfortunately off the table.1

3. Choose your malware scanner

There are a number of malware scanners available, some free, some proprietary. The
favorite seems to be the one we chose, clamav. clamav is GPL licensed and
conveniently available through the package system on your favourite BSD.

The product appears to be actively maintained with frequent updates of both the code
itself and the malware signature database. Once it is installed and configured, clamav
takes care of fetching the data it needs.

Signature database update frequency appears to be on par with competing commercial
and proprietary offerings.

4. Choose your spam filtering

Spam filtering is another well populated category in the BSD package systems. Several
of the free offerings such as dspam and spamassassin are very complete filtering
solutions, and with a little care it is even possible to combine several different systems
in a sort of cooperative whole.

We chose a slightly simpler approach and set up a configuration where messages are
evaluated by spamassassin during message receipt. spamassassin is written mainly in
perl, shepherded by a very active development team and is very flexible with all the
customizability you could wish for.

Once all those bits have been configured and are running, any messages with malware in
them are silently discarded with a log entry of the type

2007-04-08 23:39:17 1Haf6Q-000M6I-Cd => blackhole (DATA ACL discarded recipients):
This message contains malware (Trojan.Small-1604)

Messages which do not contain known malware are handed off to spamassassin for
evaluation. spamassassin evaluates each message according to its rule set, where each
matching rule tallies up a number of points or fractions of points, and in our configuration,
the very clear cases are discarded:

2007-04-08 02:39:35 1HaLRE-000Kq0-3P => blackhole (DATA ACL discarded recipients):
Your message scored 116.0 Spamassassin points and will not be delivered.

The messages which are not discarded outright fall into two categories:

Clearly not spam A large number of rules are in play, and for various reasons valid
messages may match one or several of the rules. We chose a definitely not spam limit which
means that messages which accumulate 5 spamassasin points or less are passed with only
a X-Spam-Score: header inserted.

1. We feel your pain.

16

A working model

The interval of reasonable doubt Messages which match a slightly larger number of rules
are quite likely to be spam, but since they could still conceivably be valid, we change their
Subject: header by prepending the string *****SPAM***** for easy filtering. The
result ends up looking like the illustration below to the end user:

Figure 1. Likely spam message, tagged for filtering

Mainly for the administrator’s benefit, a detailed report of which rules were matched and
the resulting scores is included in the message headers.

Figure 2. Detailed spam scores for a likely spam message

Content analysis details: (10.0 points, 5.0 required)
pts rule name description
--- --------------- ---------------------------------
0.8 EXTRA_MPART_TYPE Header has extraneous Content-type:...type= entry
1.0 HTML_IMAGE_ONLY_28 BODY: HTML: images with 2400-2800 bytes of words
0.0 HTML_MESSAGE BODY: HTML included in message
2.0 RCVD_IN_SORBS_DUL RBL: SORBS: sent directly from dynamic IP address
[62.31.124.248 listed in dnsbl.sorbs.net]
1.3 RCVD_IN_BL_SPAMCOP_NET RBL: Received via a relay in bl.spamcop.net
[Blocked - see <Mhttp://www.spamcop.net/bl.shtml?62.31.124.248>]
3.1 RCVD_IN_XBL RBL: Received via a relay in Spamhaus XBL
[62.31.124.248 listed in sbl-xbl.spamhaus.org]
1.7 RCVD_IN_NJABL_DUL RBL: NJABL: dialup sender did non-local SMTP
[62.31.124.248 listed in combined.njabl.org]

X-Spam-Flag: YES
Subject: *****SPAM***** conservatively enrichment

This means you have real data to work with for any fine tuning you need to do in your local
customization files, and for valid senders who for some reason trigger too many spam
characteristics, you may even whitelist using regular expression rules. Optional
spamassassin plugins even offer the possibility of automated feedback to hashlist sites
such as Razor, Pyzor and DCC - a few scripts will go a long way, and the spamassassin
documentation is in fact quite usable.

Performing content scanning during message receipt means you run the risk of having mail
delivery to your users stop if one of your content scanner services should happen to crash.

For that reason it can be argued that since content scanning, as opposed to greylisting,
does not have to be performed during message receipt, it should be performed later. Server

17

A working model

or end user processes can for example be set up to do filtering on user mail boxes, using
tools such as procmail or even filtering features built into common mail clients such as
Mozilla Thunderbird or Evolution.

Now of course all of this content scanning adds up to rather extensive calculations, well
into what we until quite recently would have considered “serious number crunching”. The
next section will present some recent advances which most likely will lighten the load on
your mail handlers.

Giving spammers a harder time: spamd

The early days of pure blacklisting
As content filtering grew ever more expensive, several groups started looking into how to
shift the burden from the recipient side back to the spammers. The OpenBSD project’s
spamd is one such effort which is inteded to integrate with OpenBSD’s PF packet filter.
Both PF and spamd have been ported to other BSDs, but here we will focus on how spamd
works on OpenBSD in the present version.

The initial version of spamd was introduced in OpenBSD 3.3, released in May 2003. The
basic idea was to have a basic tarpitting daemon which would produce extremely slow
SMTP replies to hosts in a blacklist of known spammers. Known spammers would have
their SMTP dialog dragged on for as long as possible, where the spamd at our end would
serve its part of the SMTP dialog at a rate of one byte per second.

spamd was designed to operate independently, with no direct interactions with your real
mail service. Instead, it integrates with any PF based packet filtering you have in place,
and frequently runs on the packet filtering gateway. Typical packet filtering rules to set up
the redirection to spamd look something like this:

table <spamd> persist
table <spamd-white> persist
rdr pass on $ext_if inet proto tcp from <spamd> to { $ext_if, $int_if:network } \

port smtp -> 127.0.0.1 port 8025
rdr pass on $ext_if inet proto tcp from !<spamd-white> to { $ext_if, $int_if:network } \

port smtp -> 127.0.0.1 port 8025

Here the table definitions denote lists of addresses, <spamd> to store the blacklist, while
the addresses in <spamd-white> are not redirected.

Blacklists and corresponding exceptions (whitelists) are defined in the spamd.conf

configuration file, using a rather straightforward syntax:

all:\
:becks:whitelist:

becks:\
:black:\
:msg="SPAM. Your address %A has sent spam within the last 24 hours":\
:method=http:\
:file=www.openbsd.org/spamd/traplist.gz

18

A working model

whitelist:\
:white:\
:method=file:\
:file=/etc/mail/whitelist.txt

Updates to the lists are handled via the spamd-setup program, run at intervals via cron.

spamd in pure blacklisting mode was apparently effective in wasting known spam senders’
time, to the extent that logs started showing a sharp increase in the number of SMTP
connections dropped during the first few seconds.

Introducing greylisting
Inspired by the early in-MTA greylisters (see the discussion of greylisting earlier), spamd
was enhanced to include greylisting functions in OpenBSD 3.5, which was released in May
2004. The result was a further reduction in load on the content filtering mail handlers, and
OpenBSD users and developers have found spamd’s greylisting to be so effective that from
OpenBSD 4.1 on, spamd greylists by default. Pure blacklisting mode is still available, but
requires specific configuration options to be set.

A typical sequence of log entries in verbose logging mode illustrates what greylisting looks
like in practice:

Oct 2 19:55:05 delilah spamd[26905]: (GREY) 83.23.213.115:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>

Oct 2 19:55:05 delilah spamd[26905]: 83.23.213.115: disconnected after 0 seconds.
Oct 2 19:55:05 delilah spamd[26905]: 83.23.213.115: connected (2/1)
Oct 2 19:55:06 delilah spamd[26905]: (GREY) 83.23.213.115: <gilbert@keyholes.net> ->

<wkitp98zpu.fsf@datadok.no>

Oct 2 19:55:06 delilah spamd[26905]: 83.23.213.115: disconnected after 1 seconds.
Oct 2 19:57:07 delilah spamd[26905]: (BLACK) 65.210.185.131:
<bounce-3C7E40A4B3@branch15.summer-bargainz.com> -> <adm@dataped.no>

Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: From: Auto lnsurance Savings
<noreply@branch15.summer-bargainz.com>

Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: Subject: Start SAVlNG M0NEY on
Auto lnsurance
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: To: adm@dataped.no
Oct 2 20:00:05 delilah spamd[26905]: 65.210.185.131: disconnected after 404 seconds.
lists: spews1
Oct 2 20:03:48 delilah spamd[26905]: 222.240.6.118: connected (1/0)
Oct 2 20:03:48 delilah spamd[26905]: 222.240.6.118: disconnected after 0 seconds.

Here we see how hosts connect for 0 or more seconds to be greylisted, while the blacklisted
host gets stuck for 404 seconds, which is roughly the time it takes to exchange the typical
SMTP dialog one byte at the time up to the DATA part starts and the message is rejected
back to the sender’s queue. It is worth noting that spamd by default greets new
correspondents one byte at the time for the first ten seconds before sending the full 451
temporary failure message.

The graph below is based on data from one of our greylisting spamd gateways, illustrating
clearly that the vast number of connection attempts are dropped within the first ten
seconds.

19

A working model

Figure 3. Number of SMTP Connections by connection length

The next peak, in the approximately 400 seconds range, represents blacklisted hosts which
get stuck in the one byte at the time tarpit. The data in fact includes a wider range of
connection lengths than what is covered here, however, the frequency of any connection
length significantly longer than approximately 500 seconds is too low to graph usefully.
The extremes include hosts which appear to have been stuck for several hours, with the
outlier at 42,673 seconds, which is very close to a full 12 hours.

Effects of implementation: Protecting the expensive appliance
Users and administrators at sites which implement greylisting tend to agree that they get
rid of most of their spam that way. However, real world data which show with any
reasonable accuracy the size of the effect are very hard to come by. People tend to just move
along, or maybe their frame of reference changes.

For that reason it was very refreshing to see a message with new data appear on the
OpenBSD-misc mailing list on October 20, 20062.

In that message, Steve Williams describes a setting where the company mail service runs
on Microsoft Exchange, with the malware and spam filtering handled by a Mcafee

2. See Steve Williams’ October 20th, 2006 message to the OpenBSD-misc mailing list
(http://marc.info/?l=openbsd-misc&m=116136841831550&w=2)

20

A working model

Webshield appliance. During a typical day at the site, Williams states, "If we received
10,000 emails, our Webshield would have trapped over 20,000 spam" - roughly a two to one
ratio in favor of unwanted messages. The appliance was however handling spam and
malware with a high degree of accuracy.

Until a new virus appeared, which the Webshield did not handle, and Williams’ users was
once again flooded with unwanted messages. Putting an OpenBSD machine with a purely
greylisting spamd configuration in front of the Webshield appliance had dramatic effects.

Running overnight, the Webshield appliance had caught a total of 191 spam messages, all
correctly classified. In addition, approximately 4,200 legitimate email messages had been
processed, and the spamd maintained whitelist had reached a size of rougly 700 hosts.

By the metrics given at the start of Williams’ message, he concludes that under normal
circumstances, the unprotected appliance would have had to deal with approximately
9,000 spam or malware messages. In turn this means that the greylisting eliminated
approximately 95% of the spam before it reached the content filtering appliance. This is in
itself a telling indicator of the relative merits of enumerating badness versus behavior
based detection.

spamdb and greytrapping
By the time the development cycle for OpenBSD 3.8 started during the first half of 2005,
spamd users and developers had accumulated significant amounts of data and experience
on spammer behaviour and spammer reactions to countermeasures.

We already know that spam senders rarely use a fully compliant SMTP implementation to
send their messages. That’s why greylisting works. Also, as we noted earlier, not only do
spammers send large numbers of messages, they rarely check that the addresses they feed
to their hijacked machines are actually deliverable. Combine these facts, and you see that
if a greylisted machine tries to send a message to an invalid address in your domain, there
is a significant probability that the message is a spam, or for that matter, malware.

Consequently, spamd had to learn greytrapping. Greytrapping as implemented in spamd
puts offenders in a temporary blacklist, dubbed spamd-greytrap, for 24 hours. Twenty-four
hours is short enough to not cause serious disruption of legitimate traffic, since real SMTP
implementations will keep trying to deliver for a few days at least. Experience from large
scale implementations of the technique shows that it rarely if ever produces false positives,
and machines which continue spamming after 24 hours will make it back to the tarpit soon
enough.

One prime example is Bob Beck’s "ghosts of usenet postings past" based traplist, which
rarely contains less than 20,000 entries. The reason we refer to it as a “traplist” is that the
list is generated by greytrapping at the University of Alberta. At frequent intervals the
content of the traplist is dumped to a file which is made available for download and can be
used as a blacklist by other spamd users. The number of hosts varies widely and has been
as high as roughly 90,000. The diagram here illustrates the number of hosts in the list over
a period of a little more than a year.

21

A working model

Figure 4. Hosts in traplist - active spam sending hosts

At the time of writing (mid April, 2007), the list typically contained around 50,000 entries.
While still officially in testing, the list was made publicly available on January 30th, 2006.
The list has to my knowledge yet to produce any false positives and is available from
http://www.openbsd.org/spamd/traplist.gz.

Setting up a local traplist to supplement your greylisting and other blacklists is very easy,
and is straightforwardly described in the spamd and spamdb documentation as well as the
tutorial listed in the references at the end of the article.

Anecdotal evidence suggests that a limited number of obviously bogus addresses such as
those which have already been seen in spamd’s greylisting logs or picked from Unknown
user messages in your mail server logs will make a measurable dent in the number of
unwanted messages which still make it through.

Useful new spamd features in OpenBSD 4.1
One of the main overall characteristics of the changes implemented in the most recent
OpenBSD release is that they tend to be what users and developers see as sensible, best
practice compliant defaults.

Typical of the sensible defaults theme is the decision to have spamd run in greylisting
mode by default.

Sites with several mail exchangers and corresponding spamd instances will appreciate the
new synchronization feature for greylisting databases between hosts.

22

A working model

Sites and domains with several mail exhangers with different priorities have seen that
spammers frequently attempt to deliver to secondary mail exchangers first. As a
consequence, the greytrapping feature has been extended to detect and act on such out of
order mail exchanger use.

23

Conclusion
The main conclusions are that the free tools work, and that by using them intelligently you
can actually make a difference.

If our goal is to achieve relative peace and quiet in our own networks so we get our real
work done, there are real advantages in stopping undesirable traffic as early as possible,
and stopping most of it at the perimeter is actually doable.

All the tools we have studied are open source. The open source model, which is closely
related to the peer review style of development seen in academic research, produces
effective, high quality tools which truly make your life easier. The often repeated argument
that development in the open would make it easier for the other side to develop
countermeasures does not match our experience. If anything we see that development in
the open means that ideas get exposed to real world conditions quickly, exposing the less
robust approaches in ways that closed development is apparently unable to match.

The data I presented earlier as graphs seem to indicate that our efforts have some effect.
There appears to be a trend which has the number of greytrapped hosts seemingly
stabilize at a higher level over time. This could be taken as an indicator that the number of
compromised machines is rising, but could equally well be interpreted to mean that
spammers and malware senders need to try harder now that effective countermeasures are
becoming more widely deployed.

By studying our adversaries’ behavior patterns we have trapped them, and we may just be
starting to win.

24

Resources

• Slides for this talk: http://home.nuug.no/~peter/malware-talk/

• Nicholas Weaver, Vern Paxson, Stuart Staniford and Robert Cunningham: A Taxonomy
of Computer Worms (http://citeseer.ist.psu.edu/weaver03taxonomy.html)

• Marcus Ranum: The Six Dumbest Ideas in Computer Security
(http://www.ranum.com/security/computer_security/editorials/dumb/index.html),
September 1, 2005

• Greg Lehey: Seen it all before? (http://ezine.daemonnews.org/200006/dadvocate.html),
Daemon’s Advocate, The Daemon News ezine, June 2000 edition

• Brad Templeton, Reflections on the 25th Anniversary of Spam
(http://www.templetons.com/brad/spam/spam25.html)

• The Morris Worm 18th anniversary site (http://www.morrisworm.com/)

• Sender Policy Framework (http://www.openspf.org/)

• Theo de Raadt: Exploit mitigation techniques
(http://www.openbsd.org/papers/ven05-deraadt/index.html)

• Firewalling with PF (http://home.nuug.no/~peter/pf/) tutorial

• Bob Beck: PF, it is not just for firewalls anymore
(http://www.ualberta.ca/~beck/nycbug06/pf) and OpenBSD spamd - greylisting and
beyond (http://www.ualberta.ca/~beck/nycbug06/spamd)

25

	
	The silent network
	Table of Contents
	List of Figures
	Malware, virus, spam - some definitions
	A history of malware
	The first virus: the Elk Cloner
	The first PC virus: the (c)Brain
	The first Unix worm: The Morris Worm
	Microsoft vs the internet
	Characteristics of modern malware

	Spam - the other annoyance
	Spam: characteristics

	Into the wild: the problem and principles for solutions
	The ugly truth
	Fighting back, on the system internals level
	Content scan
	The comedy of our errors: Content scanning measures and countermeasures

	Behavioral methods
	Combined methods and some common pitfalls

	A working model
	Where do we fit in?
	Setting up a mail server
	Giving spammers a harder time: spamd
	The early days of pure blacklisting
	Introducing greylisting
	Effects of implementation: Protecting the expensive appliance
	spamdb and greytrapping
	Useful new spamd features in OpenBSD 4.1

	Conclusion
	Resources

